Murine CD4 T Cells Produce a New Form of TGF-β as Measured by a Newly Developed TGF-β Bioassay
نویسندگان
چکیده
BACKGROUND It is generally assumed that T cells do not produce active TGF-β since active TGF-β as measured in supernatants by ELISA without acidification is usually not detectable. However, it is possible that active TGF-β from T cells may take a special form which is not detectable by ELISA. METHODOLOGY/PRINCIPAL FINDINGS We constructed a TGF-β bioassay which can detect both soluble and membrane-bound forms of TGF-β from T cells. For this bioassay, 293T cells were transduced with (caga)(12) Smad binding element-luciferase along with CD32 (Fc receptor) and CD86. The resulting cells act as artificial antigen presenting cells in the presence of anti-CD3 and produce luciferase in response to biologically active TGF-β. We co-cultured pre-activated murine CD4(+)CD25(-) T cells or CD4(+)CD25(+) T cells with the 293T-caga-Luc-CD32-CD86 reporter cells in the presence of anti-CD3 and IL-2. CD4(+)CD25(-) T cells induced higher luciferase in the reporter cells than CD4(+)CD25(+) T cells. This T cell-produced TGF-β is in a soluble form since T cell culture supernatants contained the TGF-β activity. The TGF-β activity was neutralized with an anti-mouse LAP mAb or an anti-latent TGF-β/pro-TGF-β mAb, but not with anti-active TGF-β Abs. An anti-mouse LAP mAb removed virtually all acid activatable latent TGF-β from the T cell culture supernatant, but not the ability to induce TGF-β signaling in the reporter cells. The induction of TGF-β signaling by T cell culture supernatants was cell type-specific. CONCLUSIONS/SIGNIFICANCE A newly developed 293T-caga-Luc-CD32-CD86 reporter cell bioassay demonstrated that murine CD4 T cells produce an unconventional form of TGF-β which can induce TGF-β signaling. This new form of TGF-β contains LAP as a component. Our finding of a new form of T cell-produced TGF-β and the newly developed TGF-β bioassay system will provide a new avenue to investigate T cell function of the immune system.
منابع مشابه
Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملFOXP3 and TGF-β Gene Polymorphisms in Allergic Rhinitis
Background: Regulatory CD4+T (Treg) cells are effective in maintaining immune tolerance. Objective: To investigate single nucleotide polymorphisms (SNPs) of Transforming Growth Factor β-1 (TGF-β1) and Forkhead Box Protein 3 (FOXP3) genes in Iranian patients with allergic rhinitis (AR). Methods: Variations at codons 10 and 25 of TGF-β1 and FOXP3 at positions -3279 A>C and -924 A>G were evaluated...
متن کاملAssay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کاملTGF-β Induces Surface LAP Expression on Murine CD4 T Cells Independent of Foxp3 Induction
BACKGROUND It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs. METHODOLOGY/PRINCIPAL FINDINGS We generated anti-mous...
متن کاملResting and Activated Natural Tregs Decrease in the Peripheral Blood of Patients with Atherosclerosis
Background: Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries. CD4+ T cells are known to play a role in the progression of the disease. CD4+CD25+Foxp3+ natural Treg (nTreg) cells seem to have a protective role in the disease and their reduction in acute coronary syndrome is recently shown. Objective: To investigate the frequency of nTreg subsets in the pe...
متن کامل